MATH 1A - QUIZ 6 - SOLUTIONS

PEYAM RYAN TABRIZIAN

(1) (3 points) Scientists recently discovered a drug called Peyamphetamine (Pa) which gives you a sudden boost of excitement as well as an eagerness to do math research! They discovered that when Pa is ingested in your body, the number of Pa -molecules grows at an exponential rate of 42 molecules/second. How long does it take until the number of Pa molecules in the body doubles?

We have $y^{\prime}=42 y$ (in general, k is called the relative growth rate, or the exponential growth rate), so $y(t)=C e^{42 t}$.

Now we want to find t such that:

$$
\begin{aligned}
& y(t)=2 y(0) \\
& C e^{42 t}=2 C \\
& e^{42 t}=2 \\
& 42 t=\ln (2) \\
& t=\frac{\ln (2)}{42}
\end{aligned}
$$

(2) (2 points) Solve the differential equation $T^{\prime}(t)=3(T(t)-2)$ with $T(0)=6$.

If we let $y(t)=T(t)-2$, then:
$y^{\prime}=T^{\prime}=3(T-2)=3 y$, so $y^{\prime}=3 y$, so $y=C e^{3 t}$.
Now since $y=T-2, C=y(0)=T(0)-2=6-2=4$
Hence $y(t)=4 e^{3 t}$, and so $T(t)=y(t)+2=4 e^{3 t}+2$
Other (similar) solution: Same as before, where we get: $y=C e^{3 t}$
But now $T=y+2=C e^{3 t}+2$.
But $6=T(0)=C+2$, so $C=4$, and hence $T(t)=4 e^{3 t}+2$
(3) (5 points) Peyam's utility function U is given by the following implicit equation, where B is the happiness from eating broccoli sprouts and C is the happiness from eating cakes:

$$
\left(U^{2}-e^{B}\right)^{3}=U^{3} \ln (C)
$$

Assume that at this very moment:

- Peyam's happiness from eating broccoli is $\ln (2)$ utils, and is decreasing by 2 utils/day
- Peyam's happiness from eating cake is e utils, and is increasing by $\frac{3 e}{2}$ utils/day

Is Peyam getting happier or sadder at this moment, and at what rate?

Note: Assume that $U>0$

Note: My apologies for those who were confused by the statement 'number of broccoli sprouts consumed'. What I meant to say was 'Happiness from eating broccoli sprouts'!
(1) No picture needed
(2) The equation is given: $\left(U^{2}-e^{B}\right)^{3}=U^{3} \ln (C)$
(3) Differentiating with respect to time:

$$
3\left(U^{2}-e^{B}\right)^{2}\left(2 U \frac{d U}{d t}-e^{B} \frac{d B}{d t}\right)=3 U^{2} \frac{d U}{d t} \ln (C)+U^{3} \frac{\frac{d C}{d t}}{C}
$$

(4) We know $B=\ln (2), \frac{d B}{d t}=-2, C=e$, and $\frac{d C}{d t}=\frac{3 e}{2}$.

We need to figure out what U is, and for this we use the equation for U :

$$
\begin{aligned}
\left(U^{2}-e^{B}\right)^{3} & =U^{3} \ln (C) \\
\left(U^{2}-e^{\ln (2)}\right)^{3} & =U^{3} \ln (e) \\
\left(U^{2}-2\right)^{3} & =U^{3} \\
U^{2}-2 & =U \\
U^{2}-U-2 & =0 \\
(U-2)(U+1) & =0
\end{aligned}
$$

Which gives $U=2$ or $U=-1$. However, we know that $U>0$, so $U=2$.
Now all that's left to do is to plug in everything:

$$
\begin{aligned}
3\left(U^{2}-e^{B}\right)^{2}\left(2 U \frac{d U}{d t}-e^{B} \frac{d B}{d t}\right) & =3 U^{2} \frac{d U}{d t} \ln (C)+U^{3} \frac{\frac{d C}{d t}}{C} \\
3\left(2^{2}-e^{\ln (2)}\right)^{2}\left(2(2) \frac{d U}{d t}-e^{\ln (2)}(-2)\right) & =3(2)^{2} \frac{d U}{d t} \ln (e)+2^{3} \frac{\frac{3 e}{2}}{e} \\
3(4-2)^{2}\left(4 \frac{d U}{d t}+4\right) & =12 \frac{d U}{d t}+8 \times \frac{3}{2} \\
48 \frac{d U}{d t}+48 & =12 \frac{d U}{d t}+12 \\
36 \frac{d U}{d t} & =-36 \\
\frac{d U}{d t} & =-1
\end{aligned}
$$

(5) Hence Peyam is getting sadder now, by 1 util per day.

